Journal article
Macromolecular Biosciences, vol. 22(8), 2022, p. 2200103
APA
Click to copy
Keate, R. L., Tropp, J., Collins, C., Ware, H. O. T., II, A. J. P., Ameer, G., … Rivnay, J. (2022). 3D-printed electroactive hydrogel architectures with sub-100 μm resolution promote myoblast viability. Macromolecular Biosciences, 22(8), 2200103. https://doi.org/10.1002/mabi.202200103
Chicago/Turabian
Click to copy
Keate, Rebecca L., Joshua Tropp, Caralyn Collins, Henry Oliver T. Ware, Anthony J. Petty II, Guillermo Ameer, Cheng Sun, and Jonathan Rivnay. “3D-Printed Electroactive Hydrogel Architectures with Sub-100 Μm Resolution Promote Myoblast Viability.” Macromolecular Biosciences 22, no. 8 (2022): 2200103.
MLA
Click to copy
Keate, Rebecca L., et al. “3D-Printed Electroactive Hydrogel Architectures with Sub-100 Μm Resolution Promote Myoblast Viability.” Macromolecular Biosciences, vol. 22, no. 8, 2022, p. 2200103, doi:10.1002/mabi.202200103.
BibTeX Click to copy
@article{rebecca2022a,
title = {3D-printed electroactive hydrogel architectures with sub-100 μm resolution promote myoblast viability},
year = {2022},
issue = {8},
journal = {Macromolecular Biosciences},
pages = {2200103},
volume = {22},
doi = {10.1002/mabi.202200103},
author = {Keate, Rebecca L. and Tropp, Joshua and Collins, Caralyn and Ware, Henry Oliver T. and II, Anthony J. Petty and Ameer, Guillermo and Sun, Cheng and Rivnay, Jonathan}
}